
2020 North Carolina K12 Computer Science Standards with Descriptions.

This document is designed to help North Carolina educators teach the NC Standard Course of Study for Computer Science.

This document provides more detailed descriptions of each standard in the 2020 NC K12 Computer Science Standards which
are based on the 2017 Computer Science Teachers Association Computer Science Standards.

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

Grades Sixth through Eighth
68-CS-01 Understand the design of computing devices based on an analysis of how users interact with the Computing Systems

Devices
The study of human–computer interaction (HCI) can improve the design of devices, including both hardware and software. Students should
make recommendations for existing devices (e.g., a laptop, phone, or tablet) or design their own components or interface (e.g., create their
own controllers). Teachers can guide students to consider usability through several lenses, including accessibility, ergonomics, and
learnability. For example, assistive devices provide capabilities such as scanning written information and converting it to speech.

68-CS-02 Design projects that combine hardware and software components to collect and exchange data. Computing Systems
Hardware & Software

Collecting and exchanging data involves input, output, storage, and processing. When possible, students should select the hardware and
software components for their project designs by considering factors such as functionality, cost, size, speed, accessibility, and aesthetics. For
example, components for a mobile app could include accelerometer, GPS, and speech recognition. The choice of a device that connects
wirelessly through a Bluetooth connection versus a physical USB connection involves a tradeoff between mobility and the need for an
additional power source for the wireless device.

68-CS-03 Systematically identify and fix problems with computing devices and components. Computing Systems
Troubleshooting

Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing
device itself but to devices connected to it. Just as pilots use checklists to troubleshoot problems with aircraft systems, students should use a
similar, structured process to troubleshoot problems with computing systems and ensure that potential solutions are not overlooked.
Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will
work, checking connections and settings, and swapping in working components.

68-NI-01 Analyze different ways that data is transferred across a network and the role of protocols in transmitting
data.

Networks & the Internet
Network Communication &
Organization

Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is
transmitted across networks and the Internet, as well as how to handle errors in transmission. Students should analyze different ways data is
sent using protocols to choose the fastest path, to deal with missing information, and to deliver sensitive data securely. For example,

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

students could devise a plan for resending lost information or for interpreting a picture that has missing pieces. The priority at this grade level
is understanding the purpose of protocols and how they enable secure and errorless communication. Knowledge of the details of how specific
protocols work is not expected.

68-NI-02 Explain how physical and digital security measures protect electronic information. Networks & the Internet
Cybersecurity

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to protect data include keeping
passwords hidden, locking doors, making backup copies on external storage devices, and erasing a storage device before it is reused.
Examples of digital security measures include secure router admin passwords, firewalls that limit access to private networks, and the use of a
protocol such as HTTPS to ensure secure data transmission.

68-NI-03 Explain permission and authorizations to access resources to computer systems online. Networks & the Internet
Cybersecurity

As more computing resources move online, students should understand how users gain access to protected content through permissions and
authorizations. Students should be able to explain the various roles of passwords, two-factor authentication, and tokens. They should
demonstrate knowledge of the trade-offs for these methods.

68-NI-04 Apply multiple methods of encryption to model the secure transmission of information. Networks & the Internet
Cybersecurity

Encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students
should encode and decode messages using a variety of encryption methods, and they should understand the different levels of complexity
used to hide or secure information. For example, students could secure messages using methods such as Caesar cyphers or steganography
(i.e., hiding messages inside a picture or other data). They can also model more complicated methods, such as public key encryption, through
unplugged activities.

68-DA-01 Represent data using multiple encoding schemes. Data & Analysis
Storage

Data representations occur at multiple levels of abstraction, from the physical storage of bits to the arrangement of information into
organized formats (e.g., tables). Students should represent the same data in multiple ways. For example, students could represent the same
color using binary, RGB values, hex codes (low-level representations), as well as forms understandable by people, including words, symbols,
and digital displays of the color (high-level representations).

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

68-DA-02 Collect data using computational tools. Data & Analysis
Collection Visualization &
Transformation

Our digital world is driven by data. Students should develop the necessary skills to identify and collect data. From data collected in a scientific
experiment to data gathered from online resources, students should be able to use computational tools to collect and organize the data.

68-DA-03 Transform the collected data to make it more useful and Data & Analysis
Collection Visualization &
Transformation

As students continue to build on their ability to organize and present data visually to support a claim, they will need to understand when and
how to transform data for this purpose. Students should transform data to remove errors, highlight or expose relationships, and/or make it
easier for computers to process. The cleaning of data is an important transformation for ensuring consistent format and reducing noise and
errors (e.g., removing irrelevant responses in a survey). An example of a transformation that highlights a relationship is representing males
and females as percentages of a whole instead of as individual counts.

68-DA-04 Refine computational models based on the data they have generated and/or data collected. Data & Analysis
Inference & Models

A model may be a programmed simulation of events or a representation of how various data is related. In order to refine a model, students
need to consider which data points are relevant, how data points relate to each other, and if the data is accurate. For example, students may
make a prediction about how far a ball will travel based on a table of data related to the height and angle of a track. The students could then
test and refine their model by comparing predicted versus actual results and considering whether other factors are relevant (e.g., size and
mass of the ball). Additionally, students could refine game mechanics based on test outcomes in order to make the game more balanced or
fair.

68-AP-01 Implement flowcharts and/or pseudocode to address complex problems as algorithms. Algorithms & Programming
Algorithms

Complex problems are problems that would be difficult for students to solve computationally. Students should use pseudocode and/or
flowcharts to organize and sequence an algorithm that addresses a complex problem, even though they may not actually program the
solutions. For example, students might express an algorithm that produces a recommendation for purchasing sneakers based on inputs such
as size, colors, brand, comfort, and cost. Testing the algorithm with a wide range of inputs and users allows students to refine their
recommendation algorithm and to identify other inputs they may have initially excluded.

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

68-AP-02 Create clearly named variables that represent different data types. Algorithms & Programming
Variables

A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. When planning and
developing programs, students should decide when and how to declare and name new variables. Students should use naming conventions to
improve program readability. Examples of operations include adding points to the score, combining user input with words to make a
sentence, changing the size of a picture, or adding a name to a list of people.

68-AP-03 Design and iteratively develop programs that combine control structures including nested loops and
compound conditionals.

Algorithms & Programming
Control

Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound conditionals combine two or more
conditions in a logical relationship (e.g., using AND, OR, and NOT), and nesting conditionals within one another allows the result of one
conditional to lead to another. For example, when programming an interactive story, students could use a compound conditional within a
loop to unlock a door only if a character has a key AND is touching the door.

68-AP-04 Construct programs that include events. Algorithms & Programming
Control

Events allow portions of a program to run based on a specific action. For example, students could write a program to explain the water cycle
and when a specific component is clicked (event), the program would show information about that part of the water cycle.

68-AP-05 Organize problems and subproblems into parts. Algorithms & Programming
Modularity

Students should break down problems into subproblems, which can be further broken down to smaller parts. Decomposition facilitates
aspects of program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data,
and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. For example,
animations can be decomposed into multiple scenes, which can be developed independently.

68-AP-06 Explain the design, implementation, and review of programs Algorithms & Programming
Modularity

In order to understand how programs and applications evolve into a viable product, students should be able to explain components of the
development lifecycle, including design, implementation, and review.

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

68-AP-07 Create procedures with parameters to organize code and make it easier to reuse groups of instructions. Algorithms & Programming
Modularity

Students should create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. These
procedures can be generalized by defining parameters that create different outputs for a wide range of inputs. For example, a procedure to
draw a circle involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius
parameter, the user can easily draw circles of different sizes.

68-AP-08 Assess feedback from team members and users to refine a solution that meets user needs. Algorithms & Programming
Program Development

Development teams that employ user-centered design create solutions (e.g., programs and devices) that can have a large societal impact,
such as an app that allows people with speech difficulties to translate hard-to-understand pronunciation into understandable language.
Students should begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of
the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, color contrast,
and ease of use.

68-AP-09 Incorporate existing code and media into original programs and give attribution. Algorithms & Programming
Program Development

Building on the work of others enables students to produce more interesting and powerful creations. Students should use portions of code,
algorithms, and/or digital media in their own programs and websites. At this level, they may also import libraries and connect to web
application program interfaces (APIs). For example, when creating a side-scrolling game, students may incorporate portions of code that
create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the
background. Students should give attribution to the original creators to acknowledge their contributions.

68-AP-10 Systematically test and refine programs using a range of test cases. Algorithms & Programming
Program Development

Use cases and test cases are created and analyzed to better meet the needs of users and to evaluate whether programs function as intended.
At this level, testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. Students should
begin to test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0
instead of positive numbers).

68-AP-11 Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. Algorithms & Programming
Program Development

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the
interdependent parts of a project together. Students should assume pre-defined roles within their teams and manage the project workflow
using structured timelines. With teacher guidance, they will begin to create collective goals, expectations, and equitable workloads. For
example, students may divide the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics.
They can then distribute tasks and roles among members of the team and assign deadlines.

68-AP-12 Document programs in order to make them easier to follow, test, and debug. Algorithms & Programming
Program Development

Documentation allows creators and others to more easily use and understand a program. Students should provide documentation for end
users that explains their artifacts and how they function. For example, students could provide a project overview and clear user instructions.
They should also incorporate comments in their product and communicate their process using design documents, flowcharts, and
presentations.

68-IC-01 Compare tradeoffs associated with computing technologies that affect everyday activities and career
options. Impacts of Computing Culture
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies
have tradeoffs. Students should consider current events related to broad ideas, including privacy, communication, and automation. For
example, driverless cars can increase convenience and reduce accidents, but they are also susceptible to hacking. The emerging industry will
reduce the number of taxi and shared-ride drivers, but will create more software engineering and cybersecurity jobs.

68-IC-02 Describe how equity, access, and influence impact the distribution of computing resources in a global
society.

Impacts of Computing
Culture

The distribution of computing resources is not uniform across all parts of our global society. Students should be able to describe how equity
and access are impacted by factors such as wealth, geographic location, governmental programs.

68-IC-03 Discuss issues of bias and accessibility in the design of existing technologies. Impacts of Computing
Culture

Students should test and discuss the usability of various technology tools (e.g., apps, games, and devices) with the teacher's guidance. For
example, facial recognition software that works better for lighter skin tones was likely developed with a homogeneous testing group and
could be improved by sampling a more diverse population. When discussing accessibility, students may notice that allowing a user to change
font sizes and colors will not only make an interface usable for people with low vision but also benefits users in various situations, such as in
bright daylight or a dark room.

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

68-IC-04 Collaborate, model, and promote effective research strategies for assessing and evaluating innovative
resources.

Impacts of Computing
Culture

While the Internet has become an incredible source for information, it has also become overwhelming as a means for identifying meaningful
resources. Students should develop the necessary research skills to be able to identify and evaluate appropriate resources on the Internet,
including those that demonstrate innovative approaches to problems and their solutions.

68-IC-05 Collaborate with many contributors to create a computational artifact. Impacts of Computing
Social Interactions

In the digital world, collaboration is not defined by simply the people physically in a room or even virtually on the same team. Utilizing online
resources, students can take collaboration to a much larger scale throug, crowdsourcing, the gathering services, ideas, or content from a
large group of people, especially from the online community. It can be done at the local level (e.g., classroom or school) or global level (e.g.,
age-appropriate online communities, like Scratch and Minecraft). For example, a group of students could combine animations to create a
digital community mosaic. They could also solicit feedback from many people through use of online communities and electronic surveys.

68-IC-06 Utilize tools and methods for collaboration on a project to increase connectivity of peers. Impacts of Computing
Social Interactions

Many aspects of society, especially careers, have been affected by the degree of communication afforded by computing. Students should
explore different collaborative tools and methods used to solicit input from team members, classmates, and others, such as participation in
online forums or local communities. For example, students could compare ways different social media tools could help a team become more
cohesive.

68-IC-07 Examine the benefits and drawbacks of a digital footprint and online identity Impacts of Computing
Social Interactions

As students build their digital footprint and online identity, they should be aware of the potential benefits and drawbacks these create. While
students likely appreciate the social benefit of feely connected online and the sense of accomplishment when publishing an artifact online,
they should also realize that their online presence may also create potential disadvantages. Students should examine how others may access
their information, the permanence of digital artifacts, and the ability of others to distort this information. For example, students might want
to explore online reviews of restaurants, high profile celebrities and the impact of rumors, and current events that highlight social media
pitfalls.

68-IC-08
Understand how online interactions make an impact on the social, emotional, and physical aspect of others Impacts of Computing

Social Interactions

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

The Internet is a powerful public square and represents the most connected space in the history of mankind. As such, students should know
that interactions online likely have more impact than those in person. Actions online have a chance to grow disproportionately and may cause
significant impact on others.

68-IC-09 Compare tradeoffs between allowing information to be public and keeping information private and
secure.

Impacts of Computing
Safety Law & Ethics

Sharing information online can help establish, maintain, and strengthen connections between people. For example, it allows artists and
designers to display their talents and reach a broad audience. However, security attacks often start with personal information that is publicly
available online. Social engineering is based on tricking people into revealing sensitive information and can be thwarted by being wary of
attacks, such as phishing and spoofing.

68-IC-10 Explore how laws and regulations impact the development and use of software Impacts of Computing
Safety Law & Ethics

Our society is governed by laws and regulations. Students should explore how these policies impact how software and technology can evolve.
For example, students might explore how antitrust and monopoly regulation have impacted companies from Bell Systems to Microsoft to
Amazon.

NCDPI Standards Descriptions Department of Computer Science and Technology Education Revised April 2021

	cs-description_title
	NC CS Descriptions_68

