

Introduction to High School Mathematics • Unpacked Content

For the new Essential Standards that will be effective in all North Carolina schools in the 2012-13 School Year.

What is the purpose of this document?

To increase student achievement by ensuring educators understand what the standards mean a student must know and be able to do completely and comprehensively.

What is in the document?

Descriptions of what each standard means a student will know and be able to do. The "unpacking" of the standards done in this document is an effort to answer a simple question "What does this standard mean that a student must know and be able to do?" and to ensure that description is helpful, specific and comprehensive.

How do I send Feedback?

We intend the explanations and examples in this document to be helpful, specific and comprehensive. That said, we believe that as this document is used, teachers and educators will find ways in which the unpacking can be improved and made ever more useful. Please send feedback to us at <u>feedback@dpi.state.nc.us</u> and we will use your input to refine our unpacking of the standards. Thank You!

Just want the standards alone?

You can find the standards alone at www.ncpublicschools.org

Number and Operations

Essential Standard

OIM.N.1 Understand rational numbers

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: tenths, hundredths, number line, greater than >, lesser than <, opposite, absolute value, factor, multiple, order of operations, greatest common factor (GCF), least common multiple (LCM), prime number, exponent, ^, base, exponential notation, integer

Clarifying Objectives	Unpacking What does this standard mean that a student will know and be able to do?
OIM.N.1.1 Compare integers, decimals and fractions.	• Students use a number line to compare two integers, two decimals, or two fractions, recognizing that numbers to the right are larger than the numbers to the left.
	Students compare two decimals using models to understand place value
	Example 1:
	0.1 is larger than 0.09 because 0.1 is one tenth and 0.09 is 9 hundredths.
	• Students compare fractions using models or identifying the common denominator.
	• Students use <, >, or = in their comparisons.
OIM.N.1.2 Identify equivalent	• Students use models to identify equivalent decimals. They recognize that two decimals such as 0.2 and 0.20
fractions, decimals, and percents.	are equivalent.
	• Students identify equivalent fractions, recognizing that equivalent fractions are created when the numerator and denominator are multiplied that the same number (equal to 1).
	• Students identify equivalent fractions and decimals, fractions and percents, and decimals and percents. They recognize that equivalent amounts represent the same ratio
	Example 1:
	$0.25 = \frac{25}{100} = 25\%$, which also is equal to $\frac{1}{4}$.
OIM.N.1.3 Identify absolute values	• Students use a number line to identify opposites. Students understand that numbers are opposite when they are
and opposites.	the same distance from 0 but one number is in a positive direction and one number is in a negative direction. Students recognize that the opposite of 0 is 0 and that opposites add to 0.
	Students recognize that the opposite of o is o and that opposites and to o.

	opposite of -3 opposite of 3 \leftarrow + + + + + + + + + + + + + + + + + + +
	 Students use a number line to identify absolute value as the distance a number is from zero. Students understand that since distance is positive, the absolute value of a number will be positive.
	Example 1: 5 and -5 is 5 since both 5 and -5 are 5 away from zero.
OIM.N.1.4 Use order of operations to simplify numerical expressions.	Students understand that there is an order to simplifying numerical expression.Step 1: Simplify any operations in parenthesesStep 2: Simplify any exponentsStep 3: Multiply or divide, whichever comes first as the expression is read left to rightStep 4: Add or subtract, whichever comes first as the expression is read left to rightExample 1: $4 + 20 \div 2 \ge 3$ $4 + 10 \ge 3$ Divide since it comes before the multiplication $4 + 20$ Multiplication before addition
	34 Example 2: $6 + 3(11 - 3^2)$ $6 + 3 \times (11 - 9)$ Simplify the exponent by multiplying 3×3 $6 + 3 \times 2$ Simplify inside the parenthesis $6 + 6$ Multiplication before addition 12 12

Introduction to High School Mathematics Page 4 of 25

	• Students find the least common multiple of tw	o whole numbers less than or equal to twelve.
	 Example 2: Find the least common multiple of 6 and 8. Solution: Possible solutions include: listing the multiplies of 6 (6, 12, 18, 24, 30 from the list (24); or using the prime factorization. 	0,) and 8 (8, 26, 24, 32, 40), then taking the least in common
	Factors of 6 3 2	2 2 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5
	Step 1: find the prime factors of 6 and 8. $6 = 2 \cdot 3$ $8 = 2 \cdot 2 \cdot 2$ Step 2: Find the common factors between 6 and 8 Step 3: Multiply the common factors and any extr	In this example, the common factor is 2 a factors: $2 \cdot 2 \cdot 2 \cdot 3$ or 24
	NOTE: The expectation is to determine the	he LCM regardless of the method.
OIM.N.1.6 Use calculators to solve non-negative integer exponential expressions.	 Students understand that exponents can be use being multiplied. The exponent tells the numb Using calculators students simplify expression that 2³ entered in a calculator will compute 2 	d to express repeated multiplication. The base is the number ber of times to multiply the base times itself. s with exponents and whole number bases. Students recognize $\cdot 2 \cdot 2$
	Example 1: Write 3^5 in expanded form. Solution: $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 343$	Example 2: Write $6 \cdot 6 \cdot 6$ using exponential notation. Solution: $6^4 = 1,296$

Introduction to High School Mathematics Page 5 of 25

Number and Operations

Essential Standard

OIM.N.2 Apply mathematical operations with rational numbers to solve problems.

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: **numerator**, **denominator**, **fraction**, **common denominator**, **integers**, **algebraic expression**, **mixed numbers**, **percent**, **scale factor**

Clarifying Objectives	Unpacking What does this standard mean that a student will know and be able to do?
OIM.N.2.1 Use calculators to solve real world fraction and mixed number problems.	• Students solve addition, subtraction, multiplication and division fraction problems in a real-world context with a calculator.
OIM.N.2.2 Use calculators to solve real world decimal problems.	• Students solve addition, subtraction, multiplication and division decimal problems in a real-world context with a calculator.
OIM.N.2.3 Use calculators to solve real world integer problems.	 Students solve integer problems with a calculator – possible scenarios include debt, distances between above/below sea level, gain/loss, temperatures
OIM.N.2.4 Use addition, subtraction, multiplication and division with calculators to evaluate algebraic expressions.	 Students evaluate algebraic expressions, using order of operations as needed. Example 1: Given the expression 3x + 2y, find the value of the expression when x is equal to 4 and y is equal to 3. Solution: This problem requires students to understand that multiplication is understood when numbers and variables are written together and to use the order of operations to evaluate. 3x + 2y 3 • 4 + 2 • 3 12 + 6 18

Number and Operations

Essential Standard

OIM.N.3 Apply ratios, proportions and percents to solve problems. Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: ratio, proportion, unit rate, scale factor, map Unpacking **Clarifying Objectives** What does this standard mean that a student will know and be able to do? A ratio is the comparison of two quantities or measures. The comparison can be part-to-whole (ratio of guppies to **OIM.N.3.1** Use standard ratio notation for expressing ratios in partall fish in an aquarium) or part-to-part (ratio of guppies to goldfish). to-part or a part-to-whole relationship. Example 1: A comparison of 6 guppies and 9 goldfish could be expressed in any of the following forms: $\frac{6}{9}$, 6 to 9 or 6:9. If the number of guppies is represented by black circles and the number of goldfish is represented by white circles, this ratio could be modeled as 00 000 000 0 These values can be regrouped into 2 black circles (goldfish) to 3 white circles (guppies), which would reduce the ratio to, $\frac{2}{3}$, 2 to 3 or 2:3. Students should be able to identify and describe any ratio using "For every there are **OIM.N.3.2** Use proportional Students recognize the use of ratios, unit rate and multiplication in solving problems, which could allow for the use reasoning to solve real world of fractions and decimals. problems including recipes and unit rates.

Example 1:

In trail mix, the ratio of cups of peanuts to cups of chocolate candies is 3 to 2. How many cups of chocolate candies would be needed for 9 cups of peanuts.

Peanuts	Chocolate
3	2

Solution: One possible solution is for students to find the number of cups of chocolate candies for 1 cup of peanuts by dividing both sides of the table by 3, giving $\frac{2}{3}$ cup of chocolate for each cup of peanuts. To find the amount of

chocolate needed for 9 cups of peanuts, students multiply the unit rate by nine $(9 \cdot \frac{2}{3})$, giving 6 cups of chocolate.

Example 2:

At Books Unlimited, 3 paperback books cost \$18. What would 7 books cost? How many books could be purchased with \$54.

Solution: To find the price of 1 book, divide \$18 by 3. One book is \$6. To find the price of 7 books, multiply \$6 (the cost of one book times 7 to get \$42. To find the number of books that can be purchased with \$54, multiply \$6 times 9 to get \$54 and then multiply 1 book times 9 to get 9 books. Students use ratios, unit rates and multiplicative reasoning to solve problems in various contexts, including measurement, prices, and geometry. Notice in the table below, a multiplicative relationship exists between the numbers both horizontally (times 6) and vertically (ie. 1 x 7 = 7; 6 x 7 = 42). Red numbers indicate solutions.

Number of Books (n)	Cost (C)
1	6
3	18
7	42
9	54

	Example 3.									
	Ratios can also be used in problem s	solving by th	inkin	o ahou	t the t	otal an	nount	for each r	ratio unit	
	The ratio of orange juice concentrate to water in punch is 1: 3. If you were making 32 cups of punch, how many supe of orange juice would be peeded									
	Cups of orange juice would be neede	u.	would	1 mradi	222.4		found	h To got	+ ?? away the	ratio would
	Solution: Students lecognize that the		woun	i proui		sups of	l pune	n. To get	t 32 cups, me	ratio would
	need to be duplicated 8 times, result	ing in 8 cups	5 01 01	range j	uice c	oncem	trate.			
	Example 4.									
	Example 4: Compare the number of block to wh	ita airalaa I	ftha	ratio re	maine	tha a	ma h	om monu	black aircles	will you have
	if you have 60 white circles?	ite circles. I	I uie		emains	s the sa	ime, n	ow many	Diack circles	will you have
	If you have ou white choics?									
			• •		$\sim \circ$					
		•								
	 							1		
		Black	4	40	20	60	?			
		White	3	30	15	45	60			
	l									
	Example 5:									
	If steak costs \$2.25 per pound how	much does () 8 no	unds c	ost? F	Txnlaii	1 how	vou detei	rmined your a	nswer
	If Stour Costs #2.20 per pound, no.	Illuen aces s	PC	unas -	050		1 110 1.	you actes		
	Example 6.									
	Sam averages 60 miles per hour on 1	his trip Ho	ow ma	anv mi	les did	l he tra	avel af	ter 4 hou	rs?	
OIM.N.3.3 Use appropriate strategies	Percentages are a rate per 100 Mod	lels such as	nerce	nt bars	$rac{10}{10}$ or 10	x 10 g	prids s	hould be	used to mode	el percents
to solve percent problems	reneentages are a face per roo. moe	10 15, 5 10 11 U 5	perce	in our	, 01 10	A 10 2	51140 0		useu to mou	percents.
to solve percent problems.	• Students use ratios to identify pe	ercents.								
	Example 1:									
	What percent is 12 out of 25?							Part	Whole	
	Solution: One possible solution met	thod is to set	up a	ratio ta	able:					1
	Multiply 25 by 4 to get 100. Multip	lying 12 by	4 will	give 4	18, me	aning		12	25	
	that 12 out of 25 is equivalent to 48	out of 100 o	r 48%)				?	100	1
			_	_		_	L			J
	Students use percentages to find	l the part wh	en giv	ven the	perce	nt, by	recog	nizing that	at the whole i	s being divided
	into 100 parts and then taking a	part of them	(the	percen	t).					

Example 2:

What is 40% of 30?

Solution:

If 100% is 30 then each block is 3 $(30 \div 10)$. Forty percent would be 4 of the boxes or 4 times 3.

Example 3:

30% of the students in Mrs. Rutherford's class like chocolate ice cream, then how many students are in Mrs. Rutherford's class if 6 like chocolate ice cream?

Solution: Each block represents 10%. If 30% (3 blocks) is 6, then each block represents 2 students. To find 100% then each block would be 2 so 2 x 10 = 20 students.

Example 4:

A credit card company charges 17% interest on any charges not paid at the end of the month. Make a ratio table to show how much the interest would be for several amounts. If your bill totals \$450 for this month, how much interest would you have to pay if you let the balance carry to the next month?

Charges	\$1	\$50	\$100	\$200	\$450
Interest	\$0.17	\$8.50	\$17	\$34	?

Introduction to High School Mathematics Page 10 of 25

OIM.N.3.4 Use scale factors and	•	Given a scale factor, students determine the distance on a map, or the dimensions of a figure.
models to solve real world problems.		

Introduction to High School Mathematics Page 11 of 25

Geometry

Essential Standard

OIM.G.1 Use properties of two- and three-dimensional figures to solve problems.

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: perimeter, circumference, area, polygon, quadrilateral, octagon, pentagon, hexagon, circle, Pi, \mathcal{T} , diameter, radius, triangle, rectangle, square, volume, cube, length, width, height, rectangular prism, cylinder, base of cylinder, square root, Pythagorean Theorem, hypotenuse, squared, cubed

Clarifying Objectives	Unpacking What does this standard mean that a student will know and be able to do?
OIM.G.1.1 Calculate perimeter of polygons and circumference of circles to solve real world problems.	 Students understand that perimeter is the distance around a polygon and circumference is the distance around a circle. To calculate the perimeter of a polygon, the length of each side is added. Using a model to represent the diameter, students understand that the length of the diameter will go around the circle approximately 3 times, giving the relationship represented by Pi (<i>T</i>). Students use the formula C = 2<i>T</i>r to calculate the circumference.
OIM.G.1.2 Calculate areas of polygons and circles to solve real world problems	 Students understand that area gives the number of squares needed to cover a polygon or circle. Finding the area of triangles is introduced in relationship to the area of rectangles – a rectangle can be decomposed into two congruent triangles. Therefore, the area of the triangle is ½ the area of the rectangle. The area of a rectangle can be found by multiplying base x height; therefore, the area of the triangle is ½ bh or (b x h)/2. Students decompose shapes into rectangles and triangles to determine the area. For example, a trapezoid can be decomposed into triangles and rectangles (see figures below). Using the trapezoid's dimensions, the area of the individual triangle(s) and rectangle can be found and then added together. Special quadrilaterals include rectangles, squares, parallelograms, trapezoids, rhombi, and kites.
	Note: Students recognize the marks on the isosceles trapezoid indicating the two sides have equal measure.

Introduction to High School Mathematics Page 14 of 25

OIM.G.1.4 Use the square root of the area to identify the length of the side of a square.	 Students understand the relationship between geometric squares, area, side length and square roots. <u>Example 1:</u> Students create squares with various side lengths and identify the area and side length 					
		Dimensions	Area	Side Length	Square Root of Area	-
OIM.G.1.5 Use the Pythagorean	• Students explain th	e Pythagorean 7	Гheorem а	s it relates to the	area of squares co	oming off of all sides of a right
Theorem to solve real world problems.	triangle – the sum squared.	of the area of the	e legs (two	o smaller sides) so	quared is equal to	the area of the hypotenuse

Measurement

Essential Standard

OIM.M.1 Apply time and measurement skills to solve problems.

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: **time, analog, digital, p.m., a.m., hour, minute, second, watch hands, half, quarter, o'clock, colon, interval, noon, midnight, days, week, month, year, measure, length, inch, mile, yard, foot, capacity, volume, gallon, pint, cup, quart, tablespoon, teaspoon, recipe, weight, pound, ounce, ton, temperature, degree, °, Fahrenheit, thermometer**

Clarifying Objectives	Unpacking What does this standard mean that a student will know and be able to do?
OIM.M.1.1 Use analog and digital clocks to tell time.	 Students read a.m. and p.m. times on a digital clock, recognizing that a colon separates the hours and minutes. Students read time to the nearest minute on an analog clock. Students understand the relationship between times such as 8:45 and "quarter til 9", 2:15 and "quarter past 2", 6:50 and "10 til 7, etc. Students recognize that 12:00 p.m. is noon and 12:00 a.m. is midnight. Students recognize that there are 60 seconds in 1 minutes and 60 minutes in 1 hour.
OIM.M.1.2 Identify regularly scheduled activities based on time	Students read various schedules to solve problems. Possible examples include bus schedules of arrivals and departures, class schedules, movie schedules
OIM.M.1.3 Use time to solve problems.	This standard calls for students to solve elapsed time, including word problems. Students could use clock models or number lines to solve. On the number line, students should be given the opportunities to determine the intervals and size of jumps on their number line. Students could use pre-determined number lines (intervals every 5 or 15 minutes) or open number lines (intervals determined by students).
OIM.M.1.4 Use a calendar to solve problem	 Students understand that there are 7 days in a week and 12 months in a year. Students read a calendar understanding that reading vertically gives the dates of all the Mondays, Tuesdays, etc. and that one week is the length across the calendar. Students solve problems using a calendar.

	 Example 1: You need to schedule a follow-up appointment with your doctor 2 weeks from September 20. What day is your appointment? Example 2: Your cousins are coming for a visit on November 10. You need to call one week before their arrival to confirm their arrival time. On what date should you call?
OIM.M.1.5 Use standard measurement tools to measure length, capacity, weight and temperature.	 Students identify the appropriate tool for measuring length, capacity, weight or temperature. Students use pictures (or the actual tool) to measure the length, capacity, weight or temperature of an object. Appropriate units are used with the numerical measurement.

Algebra

Essential Standard

OIM.A.1 Apply algebraic properties to solve problems.

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: equations, inequalities, less than, <, greater than, >, less than or equal to, \leq , greater than or equal to, \geq , variable, coefficient, "like" term, constant, expression, distributive property, equivalent expressions

Clarifying Objectives	Unpacking What does this standard	mean that a stud	ent will kr	now and be ab	le to do?
OIMA.1.1 Use appropriate strategies to solve one and two-step equations resulting in positive solutions in real world contexts.	• Students use various strategies to solve one-step and two-step equations. Example 1: Joey had 26 papers in his desk. His teacher gave him some more and now he has 100. How many papers did his teacher give him? Solution: This situation can be represented by the equation $26 + n = 100$ where <i>n</i> is the number of papers the teacher gives to Joey. This equation can be stated as "some number was added to 26 and the result was 100". Students ask themselves "What number was added to 26 to get 100?" to help them determine the value of the variable that makes the equation true. One way to solve this equation is using a Bar Model: Each bar represents one of the values. Students use this visual representation to demonstrate that 26 and the unknown value together make 100.				
	100				
		26		n	
	Example 2: The youth group is going on a trip to the state fair. The trip costs \$52. Included in that price is \$11 for a concert ticket and the cost of 2 passes, one for the rides and one for the game booths. Each of the passes cost the same price. Write an equation representing the cost of the trip and determine the price of one pass.				
	x	x	11	2x + 11 = 5	2
	52		2x = 41 x = \$20.50		

Introduction to High School Mathematics Page 18 of 25

OIMA.1.2 Represent inequalities in real world situations	Many real-world situations are represented by inequalities. Students write an inequality and represent solutions on a number line for various contextual situations. Example 1: The class must raise at least \$80 to go on the field trip. If <i>m</i> represents money, then the inequality $m \ge to$ \$80. Students recognize that possible values can include too many decimal values to name. Therefore, the values are represented on a number line by shading.							
				ľ				
		\$70	\$75	\$80	\$85	\$90		
	A number line diagram solutions that are less example above, when and decimals, which a number line to show t	m is drawn w than or great the number i are represente hat an inequa	ith an open er than the r s to be inclu d on the nur lity has an i	circle when a number but n nded. Studen mber line by nfinite numb	an inequality ot equal to th its recognize shading. Shaper of solution	contains a < or e number. The that possible va ading is extende ns.	> symbol to sh circle is shaded lues can includ d through the a	low d, as in the le fractions arrow on a
OIMA.1.3 Use appropriate strategies to solve one and two-step inequalities using whole numbers in real world contexts.	• Students solve on Example 1: Florencia has at most on t-shirts. Each t-shi Solution: $8x + 22 \le 60$ w $8x \le 38$ s $x \le 4.7$ d Since Florencia canno	e-step and tw \$60 to spend rt costs \$8. W where x is the ubtract 22 fro livide both side of buy .7 of a	on clothes. on clothes. Trite an ineq number of t om both side les by 8 t-shirt then	ualities (no n She wants to uality for the -shirts es the number o	egative coeff buy a pair o number of t- of t-shirts she	icients) f jeans for \$22 c shirts she can p can buy should	lollars and sper urchase. be 4 or less.	nd the rest
OIMA.1.4 Illustrate the distributive property using area models.	• Students use the c the distributive pr x + 3, the area of	tistributive property with very the flowers b	operty to wariables. G elow can be	rite equivaler iven that the expressed as	width is 4 ur s $4(x+3)$ or 4	s. Area models nits and the leng $4x + 12$.	can be used to th can be repre	sented by

Introduction to High School Mathematics Page 19 of 25

	x 3 Roses Irises
OIMA.1.5 Understand the use of the distributive property and combining like terms to write equivalent algebraic expressions.	 Students demonstrate an understanding of like terms as quantities being added or subtracted with the same variables and exponents. Example: 3x + 4x are like terms and can be combined as 7x; however, 3x + 4x² are not. This concept can be illustrated by substituting in a value for <i>x</i>. For example, 9x - 3x = 6x not 6. Choosing a value for <i>x</i>, such as 2, can prove non-equivalence. 9(2) - 3(2) = 6(2) however 9(2) - 3(2) ? 6 18 - 6 = 12 18 - 6 ? 6 12 = 12 12 12 ≠ 6
	• Students simplify algebraic expressions using the distributive property and combining like terms. Example: To simplify $2(x + 4) + 3x$ 2x + 8 + 3x (distribute the 2 to the x and 4) 5x + 8 (combine like terms 2x and 3)

Introduction to High School Mathematics Page 20 of 25

Algebra

Essential Standard

OIM.A.2 Understand patterns and relationships.

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: horizontal, vertical, Coordinate Plane, quadrant, ordered pairs, origin, *x*-coordinate, *y*-coordinate, *x*-axis, *y*-axis, slope, rise/run, linear equation, *y*-intercept, coefficient, constant

Clarifying Objectives	Unpacking What does this standard mean that a student will know and be able to do?
OIMA.2.1 Understand the use of the Cartesian Coordinate Plane to graph and identify ordered pairs.	Students recognize the point where the x-axis and y-axis intersect as the origin. Students recognize that ordered pairs have an x -value and y-value.
OIMA.2.2 Represent patterns in real world situations using a table, graph, or equation.	 Students identify the <i>y</i>-intercept as the <i>y</i>-value when <i>x</i> is 0 in a table, as the point where a line crosses the <i>y</i>-axis on a graph and as the constant in a linear equation. Students identify the slope as the <u>change in the <i>y</i> values</u> in a table, as the ratio of rise to run in a graph or as change in the <i>x</i> values the coefficient of <i>x</i> in a linear equation.
OIMA.2.3 Identify the slope given a table, graph, or equation.	In a table, the slope can be found by determining the distance between the x-values and the y-values and using the ratio of rise (y-values) to run (x-values). The distance between 8 and -1 is 9 in a negative direction \rightarrow -9; the distance between -2 and 1 is 3 in a positive direction. The slope is the ratio of rise to run or $\frac{y}{x}$ or $\frac{-9}{3} = -3$. This same ratio would occur for any pair of points chosen. $\frac{x}{2} + \frac{y}{3} = -\frac{3}{2}$ Using graphs, students identify the slope of the rise
	Using graphs, students identify the slope as the <u>rise.</u> run
	Students recognize that in a linear equation the coefficient of x is the slope and the constant is the y-intercept.

OIMA.2.4 Represent the equation of a line in slope-intercept form, given the slope and y-intercept. OIMA.2.5 Represent a linear equation	 Students use the slope-intercept form of an equation y=mx + b, where m is the slope (coefficient of x) and b is the y-intercept. Given the slope and y-intercept, students write the equation. Given the slope-intercept form, students identify the slope and the y-intercept. Students recognize the y-intercept as the starting point for a graph and the slope as the rise/run to get to the
graphically given the slope and y- intercept.	next point. Given an equation in slope-intercept form or the slope and y-intercept, students graph the equation.
OIMA.2.6 Represent ordered pairs and linear equations.	 Students recognize that the ordered pairs making up the line satisfy the linear equation associated with the line. Students understand that the linear equation gives the relationship between the <i>x</i>-coordinate and the <i>y</i>-coordinate of an ordered pair. For example, the following ordered pairs have <i>y</i>-coordinates that are two times the <i>x</i>-coordinate. Therefore, the linear equation for the line would be <i>y</i> = 2<i>x</i>. (0, 0) (2, 4) (3, 6) (5, 10)
	 Example 1: Which of the following points would not be on the line represented by the equation: y = 3x +2? (0, 2) (-1, -1) (2, 4) (1, 5) Solution: (2, 4) would not be on the line because 3 • 2 + 2 = 8 not the <i>y</i>-coordinate of 4.

Statistics and Probability

Essential Standard

OIM.S.1 Understand data in terms of graphical displays, measures of center and range.

Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using appropriate mathematical language. The terms students should learn to use with increasing precision with this standard are: **data**, **graph**, **circle graph**, **bar graph**, **pictograph**, **dot plot**, **mean**, **median**, **mode**, **range**, **maximum**, **minimum**, **average**, **linear model**, **positive association**, **negative association**, **no association**

Clarifying Objectives	Unpacking What does this standard mean that a student will know and be able to do?			
OIM.S.1.1 Interpret data from circle graphs, bar graphs, pictographs, maps, and scatter plots, in context.	Pose a question: Student should come up with a question. What is the typical genre read in our class? Collect and organize data: student survey Pictographs: Scaled pictographs include symbols that represent multiple units. Below is an example of a pictograph with symbols that represent multiple units. Graphs should include a title, categories, category label, key, and data. How many more books did Juan read than Nancy?			
	Number of Books Read Nancy $\leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$ Juan $\leftrightarrow \leftrightarrow $			

Introduction to High School Mathematics Page 23 of 25

OIM.S.1.3 Classify type (positive, negative, no relation) of association of data in scatterplots.	 Scatter plots are used to determine if an association exists between two variables. This association can be positive (as one value increases, the other variable increases), negative (as one value increases, the other variable decreases) or none (no apparent association between the variables. Given scatter plots, students classify the association between the variables as positive, negative or none. 		
	$ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $		
	• Given scenarios, students classify the association between the variables as positive, negative or none.		
	 Examples: 1. The number of words written and the amount of ink in a pen <i>Solution: negative → as the number of words increases, the amount of ink decreases</i> 2. A person's height and their salary <i>Solution: none</i> 3. The number of tickets sold at the movie theater and the amount of popcorn cold <i>Solution: positive →as the number of tickets sold increases, the amount of popcorn increases</i> 		
OIM.S.1.4 Represent trends on scatterplots when appropriate, with a linear model.	 Students represent trends when appropriate with a linear model that is representative of most of the points. Students recognize an appropriate linear model for a scatter plot. 		